Assignment of the Quaternary Olefinic Carbon Atoms of β -Carotene by 2D ¹H,¹³C-Chemical Shift Correlation *via* Long-range Couplings

Jacques Wernly and Jürgen Lauterwein*

Institut de chimie organique, Université de Lausanne, 2, rue de la Barre, CH-1005 Lausanne, Switzerland

The quaternary carbon atoms of β -carotene can be conveniently assigned by heteronuclear correlation *via* the twoand three-bond couplings with the methyl protons.

The correct assignment of the ¹³C n.m.r. resonances of the polyene chains of retinoids and carotenoids is a problem of considerable importance in the structural analysis of these molecules and much effort has been made in the last decade to achieve this goal.1-4 We have recently applied twodimensional (2D) n.m.r. techniques to polyene systems and have reassigned by ¹H,¹³C-shift correlation spectroscopy⁵ the olefinic methine carbon atoms of all-trans retinal6 and β -carotene.⁷ In the standard pulse sequence,⁵ 90°(¹H)- $t_1/2$ - $180^{\circ}({}^{13}C)-t_1/2-\tau_1-90^{\circ}({}^{1}H,{}^{13}C)-\tau_2$ -acquire with ${}^{1}H$ noise decoupling, the fixed intervals τ_1 and τ_2 were chosen so as to correlate a carbon with its directly attached proton via ${}^{1}J_{CH}$. However, the problem of assigning the olefinic quaternary carbon atoms still remained, and turned out to be especially difficult in the case of β -carotene, (1), because of the lack of a polarizing functional group. Earlier attempts by off-resonance decoupling techniques,^{2,3} relaxation time measurements,⁸ and chemical shift comparisons in a series of methyl β -apocarotenoates³ and β -apocarotinals⁹ were only partly successful and the conclusions from different research groups have been contradictory until now.2,3,9

We demonstrate here that a ${}^{1}H$, ${}^{13}C$ -shift correlated experiment allows the unambiguous assignment of the olefinic quaternary carbons of (1) when the polarization transfer is made *via* the long-range couplings (${}^{2}J_{CH}$, ${}^{3}J_{CH}$) with the methyl and methylene protons. Repeated experiments with delays corresponding to different J_{CH} values indicated that

maximum polarization transfer was obtained for $J_{CH} \simeq 10$ Hz. The contour plot of Figure 1 gives the correlations obtained at the chemical shift co-ordinates of the long-range coupled CH pairs. Individual slices at the carbon chemical shift positions (Figure 2) show clearly which protons are involved in the long-range couplings. It can be seen that the methyl protons 3H-C(18) and 3H-C(16,17) correlate with the carbon at δ 138.46. This carbon must be assigned to C(6) since it is the

Figure 1. ¹H, ¹³C-shift-correlated 2D n.m.r. spectrum at 90.5 MHz of the olefinic carbon region of (1) (0.06 M in C₆D₆ at 30 °C). The correlation was made *via* the long-range C,H couplings ($\tau_1 = 50$ ms, $\tau_2 = 25$ ms). The contour plot shows the responses from the aliphatic methyl and methylene protons. Left: 1D ¹H n.m.r. spectrum. Top: (a) projection of the 2D data matrix on the ¹³C chemical shift axis (realise the nulling of the ¹J_{CH} correlations); (b) 1D ¹³C n.m.r. spectrum (the solvent peak is marked by an asterisk).

Figure 2. Cross-sections through the 13 C chemical shifts in the 2D shift-correlated spectrum of Figure 1. Digital resolution 2 Hz/pt. (a): 1D ¹H n.m.r. spectrum of the aliphatic region of (1). The proton assignments are indicated.

only one which can couple *via* ${}^{3}J_{CH}$ with the protons of three methyl groups (the assignment is based on the ${}^{4}J_{CH}$ couplings being negligibly small).¹⁰ The carbon at δ 129.38 correlates *via* ${}^{2}J_{CH}$ with 3H-C(18) and 2H-C(4) and must therefore be attributed to C(5). Finally, it is clearly seen from Figure 2 that the protons 3H-C(19) correlate with C(9) (δ 135.95), while those of 3H-C(20) correlate with C(13) (δ 136.67).

This assignment technique demands that the resonances of the methyl and methylene groups are well-resolved in the one-dimensional 1 H n.m.r. spectrum, a condition which is obtained if (1) is dissolved in benzene. The assignment of the methyl protons follows that of the olefinic protons by exploiting the allylic couplings and/or the nuclear Overhauser enhancements.⁴

The size of the coupling constant (≈ 10 Hz) corresponding to the delays chosen appears overestimated when typical ${}^{2}J_{CH}$

and ${}^{3}J_{CH}$ couplings involving methyl protons are considered.¹⁰ However the optimum experimental delays are often shorter than those calculated theoretically, a principal reason being that ¹H relaxation during the pulse sequence competes with the detection of the ¹³C signal.¹¹

The analysis of the long-range correlations between the olefinic carbons and the methyl and methylene protons resulted in a much better sensitivity than when the same experiment was performed between the olefinic carbons and the olefinic protons. Obviously, the correlation *via* the methyl protons takes advantage of several favourable circumstances: (a) there is only one pathway for polarization transfer, its sensitivity being increased by the number of equivalent methyl protons; (b) the methyls are expected to give the most intense 2D responses because they appear as singlets in the ¹H n.m.r. spectrum; (c) the similar magnitudes of the two- and threebond couplings involving the methyl protons allow a simultaneous establishment of connectivities *via* both types of couplings in a single experiment.

From the present experiment we are convinced that 2D ¹H,¹³C-shift correlation spectroscopy using the long-range couplings with the methyl protons can be applied as a general tool for the assignment of the quaternary carbons in retinoids and carotenoids, and this should be independent of the number of carbon atoms, if only the ¹H resonances of the various methyl groups can be resolved.

This work was supported by a grant from the Swiss National Science Foundation.

Received, 29th April 1985; Com. 558

References

- 1 R. S. Becker, S. Berger, D. K. Dalling, D. M. Grant, and R. J. Pugmire, J. Am. Chem. Soc., 1974, 96, 7008.
- 2 G. Englert, Helv. Chim. Acta, 1975, 58, 2367.
- 3 G. Moss, Pure Appl. Chem., 1976, 47, 97.
- 4 G. Englert, 'Carotenoid Chemistry and Biochemistry,' eds. G. Britton and T. W. Goodwin, Pergamon, London, 1981, p. 107.
- 5 R. Freeman and G. A. Morris, Bull. Magn. Reson., 1979, 1, 5.
- 6 J. Wernly and J. Lauterwein, Helv. Chim. Acta, 1983, 66, 1576.
- 7 J. Wernly and J. Lauterwein, Magn. Reson. Chem., 1985, 23, 170.
- 8 Y. Inoue, A. Takahashi, Y. Tokitô, R. Chûjô, and Y. Miyoshi, Org. Magn. Reson., 1974, 61, 487.
- 9 W. Bremser and J. Paust, Org. Magn. Reson., 1974, 6, 433.
- 10 P. E. Hansen, Prog. Nucl. Magn. Reson. Spectrosc., 1981, 14, 175.
- 11 A. Bax, 'Topics in Carbon-13 NMR Spectroscopy,' ed. G. C. Levy, Wiley, New York, 1984, vol. 4, p. 207.